How to Expand A Nested Dictionary In Pandas Column?

4 minutes read

To expand a nested dictionary in a pandas column, you can use the json_normalize function from the pandas library. This function allows you to flatten a nested dictionary structure into separate columns within a DataFrame.


First, you will need to import the necessary modules:

1
2
import pandas as pd
from pandas.io.json import json_normalize


Then, you can use the json_normalize function to expand the nested dictionary in a pandas column. Here is an example of how to do this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
# Create a sample DataFrame with a nested dictionary column
data = {'id': [1, 2, 3],
        'nested_dict': [{'a': 1, 'b': 2}, {'a': 3, 'b': 4}, {'a': 5, 'b': 6}]}

df = pd.DataFrame(data)

# Expand the nested dictionary in the 'nested_dict' column
df_expanded = json_normalize(df['nested_dict'])

# Merge the expanded DataFrame with the original DataFrame
df_final = pd.concat([df, df_expanded], axis=1)

print(df_final)


This will result in a DataFrame where the nested dictionary column has been expanded into separate columns for each key-value pair in the dictionary. This allows you to work with the data more easily and perform further analysis or manipulation as needed.


How to convert a pandas DataFrame column with nested dictionaries to separate columns?

You can use the json_normalize function from the pandas library to convert a column containing nested dictionaries into separate columns. Here's an example of how you can do this:


Assuming you have a DataFrame df with a column nested_column containing nested dictionaries, you can use the following code to convert it into separate columns:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
from pandas.io.json import json_normalize

# Assume df is your DataFrame with the nested column
nested_data = json_normalize(df['nested_column'])

# Concatenate the original DataFrame with the newly created DataFrame containing separate columns
df = pd.concat([df, nested_data], axis=1)

# Drop the original column containing nested dictionaries
df = df.drop('nested_column', axis=1)


In this code snippet, json_normalize is used to expand the nested structure of the column nested_column into separate columns. Then, pd.concat is used to concatenate the original DataFrame df with the newly created DataFrame containing the separate columns. Finally, the original column is dropped to get the desired output.


How to flatten a nested dictionary in pandas?

You can flatten a nested dictionary in pandas using the json_normalize() function from the pandas library. Here's an example of how you can do this:

1
2
3
4
5
6
7
8
9
import pandas as pd

# Nested dictionary
data = {'A': {'a': 1, 'b': 2}, 'B': {'c': 3, 'd': 4}}

# Flatten the nested dictionary
df = pd.json_normalize(data)

print(df)


This will output a flattened DataFrame with the following structure:

1
2
   A.a  A.b  B.c  B.d
0    1    2    3    4


You can also specify the sep parameter in json_normalize() function to change the separator between nested keys.


How to iterate over a nested dictionary in Python?

You can iterate over a nested dictionary in Python using nested loops. Here is an example to demonstrate how to do this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
nested_dict = {
    'first_level_1': {
        'second_level_1': 'value1',
        'second_level_2': 'value2'
    },
    'first_level_2': {
        'second_level_3': 'value3',
        'second_level_4': 'value4'
    }
}

for key, value in nested_dict.items():
    print(key)
    for inner_key, inner_value in value.items():
        print(inner_key, inner_value)


In this example, we first iterate over the top-level keys of the nested dictionary using nested_dict.items(). Then, for each key, we iterate over the inner dictionary using value.items() to access the inner key-value pairs.


How to merge two nested dictionaries in Python?

You can merge two nested dictionaries in Python by using the update() method along with a recursive function to handle merging of nested dictionaries. Here's an example code to merge two nested dictionaries:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
def merge_dicts(dict1, dict2):
    for key, value in dict2.items():
        if key in dict1 and isinstance(dict1[key], dict) and isinstance(value, dict):
            merge_dicts(dict1[key], value)
        else:
            dict1[key] = value

dict1 = {
    'key1': 'value1',
    'nested_dict': {
        'key2': 'value2',
        'key3': 'value3'
    }
}

dict2 = {
    'key4': 'value4',
    'nested_dict': {
        'key5': 'value5'
    }
}

merge_dicts(dict1, dict2)
print(dict1)


This code will merge dict2 into dict1 by updating the values of keys that exist in both dictionaries. If a key in dict2 is a dictionary and the corresponding key in dict1 is also a dictionary, the function recursively merges the nested dictionaries. The output will be:

1
2
3
4
5
6
7
8
9
{
    'key1': 'value1',
    'nested_dict': {
        'key2': 'value2',
        'key3': 'value3',
        'key5': 'value5'
    },
    'key4': 'value4'
}


Facebook Twitter LinkedIn Telegram Whatsapp

Related Posts:

To convert a nested json file into a pandas dataframe, you can use the json_normalize function from the pandas library. This function can handle nested json structures and flatten them into a tabular format suitable for a dataframe. You can read the json file ...
To only get the first n numbers in a date column in pandas, you can convert the date column to string type and then use string slicing to extract the desired numbers. For example, if you want to get the first 4 numbers in a date column, you can use the str acc...
To turn a column header into a pandas index, you can use the set_index() method. This method allows you to specify which column you want to set as the index for the dataframe. Simply pass the column name as an argument to set_index() and pandas will use that c...
To create a calculated column in pandas, you can use the following steps:Import pandas library.Create a dataframe using pandas.Use the assign() function to add a new column to the dataframe and perform calculations on existing columns.Use lambda functions or o...
To sum up values from a pandas dataframe column, you can use the sum() method on the specific column of interest. This will calculate the sum of all values in that column. You can also use the np.sum() function from the NumPy library for the same purpose. Addi...